This study evaluated the mechanism of epinephrine potentiation of platelet secretion induced by thromboxane A(2) (TXA(2)). Dog platelets that do not secrete in response to TXA(2) alone (TXA(2)-) were compared with dog platelets that do secrete (TXA(2)+) and with human platelets. TXA(2)- platelets had impaired TXA(2) receptor (TP receptor)-G protein coupling, indicated by 1) impaired stimulated GTPase activity, 2) elevated basal guanosine 5'-O-(3-thiotriphosphate) binding, and 3) elevated Galpha(q) palmitate turnover that was corrected by preexposure to epinephrine. Kinetic agonist binding studies revealed biphasic dog and human platelet TP receptor association and dissociation. TXA(2)- and TP receptor-desensitized TXA(2)+ dog and human platelets had altered ligand binding parameters compared with untreated TXA(2)+ or human platelets. These parameters were reversed, along with impaired secretion, by epinephrine. Basal phosphorylation of TXA(2)- platelet TP receptors was elevated 60% and was normalized by epinephrine. Epinephrine potentiates platelet secretion stimulated by TXA(2) by reducing basal TP receptor phosphorylation and facilitating TP receptor-G protein coupling in TXA(2)- platelets and, probably, in normal platelets as well.