Cisplatin is a potent anti-cancer drug, which functions by cross-linking adjacent DNA guanine residues. However within one day of injection, 65~98% of the platinum in the blood plasma is protein-bound. It is generally accepted that cisplatin binds to methionine and histidine residues, but what is often underappreciated is that platinum from cisplatin has a 2+ charge and can form up to four bonds. Thus, it has the potential to function as a cross-linker. In this report, the cross-linking ability of cisplatin is demonstrated by Fourier transform ion cyclotron resonance (FTICR) mass spectrometry (MS) with the use of standard peptides, the 16.8 kDa protein calmodulin (CaM), but was unsuccessful for the 64 kDa protein hemoglobin. The high resolution and mass accuracy of FTICR MS along with the high degree of fragmentation of large peptides afforded by collisionally activated dissociation (CAD) and electron capture dissociation (ECD) are shown to be a valuable means of characterizing cross-linking sites. Cisplatin is different from current cross-linking reagents by targeting new functional groups, thioethers, and imidazoles groups, which provides complementarity with existing cross-linkers. In addition, platinum(II) inherently has two positive charges which enhance the detection of cross-linked products. Higher charge states not only promote the detection of cross-linking products with less purification, but result in more comprehensive MS/MS fragmentation and can assist the assignment of modification sites. Moreover, the unique isotopic pattern of platinum flags cross-linking products and modification sites by mass spectrometry.