The construction, use, and maintenance of tritium‐related equipment will inevitably produce tritium‐containing radioactive waste gas, and the production of efficient catalysts for tritium removal remains a difficult problem. Herein, silicalite‐1 zeolite with entrapped Pt nanoclusters is skillfully post‐oxidized at an appropriate temperature, building highly active Pt─O sites on the nanoclusters to achieve efficient oxidation of hydrogen isotopes at low temperatures. The designed Pt─O sites can directly participate in the oxidation reaction of hydrogen isotopes. Compared to the case without Pt─O sites, the presence of these sites significantly reduces the reaction energy barrier to 0.55 eV, enabling the catalyst to achieve a hydrogen conversion rate of 99% at a low temperature of 40 °C. Specifically, the O atoms consumed by the Pt─O sites in the reaction are replaced by O2 gas and this cycle repeats, which is consistent with the Mars‐van Krevelen (M–K) theory. This ensures efficient catalytic oxidation of hydrogen isotopes, and provides an astonishingly high conversion rate of 99% in the nearly 34 days restart performance test. The results of this study provide insights into the strategic design of efficient catalysts for hydrogen isotope oxidation.