Some modern laminated and calcified stromatolitic structures are partially or completely formed by eukaryotes. Diatom populations in freshwater environments with elevated ionic concentrations contribute to calcite precipitation, and the formation of distinctive mineral‐rich stromatolitic laminae. Two types of stromatolite‐forming diatom populations were observed. In the first example, in stromatolies growing on a quarry ledge near Laegerdorf, North Germany, calcite crystals with biogenic imprints form around polysaccharide stalks of the diatom Gomphonema olivaceum var. calcarea (Cleve) Cleve‐Euler. These individually precipitated crystals eventunally become cemented together in layers, forming rigid, laminated stromatolitic deposits which drape over the quarry ledge. In the second example, in stromatolites forming in a shallow stream near Cuatro Ciénegas, Coahuila, Mexico, diatomaceous laminae also form by the accumulation of carbonate particles in a matrix of diatoms and their extracellular polysaccharide products. These laminae become thick enough to drape over individual stromatolite heads. The diatoms responsible for these deposits are Amphora aff. A. Katii Selva, Nitzschia denticula Grun., and six other species. At Cuatro Ciénegas, in addition to the diatomaceous laminae, carbonate‐rich cyanobacterial layers, dominated by two cyanobacterial species with different fabrics and porosities, are also present and contribute substantially to the growth of the stromatolites. In both the Laegerdorf and Cuatro Ciénegas examples, entire stromatolites or thick laminations on stromatolites are built by a small number of diatom species which produce copious amounts of extracellular stalk, gel, and sheath material, a property they share with cyanobacterial stromatolite builders.