The concerted action of many protein kinases helps orchestrate the error‐free progression through mitosis of mammalian cells. The roles and regulation of some prominent mitotic kinases, such as cyclin‐dependent kinases, are well established. However, these and other known mitotic kinases alone cannot account for the extent of protein phosphorylation that has been reported during mammalian mitosis. Here we demonstrate that CK1α, of the casein kinase 1 family of protein kinases, localises to the spindle and is required for proper spindle positioning and timely cell division. CK1α is recruited to the spindle by FAM83D, and cells devoid of
FAM83D
, or those harbouring CK1α‐binding‐deficient
FAM83D
F283A/F283A
knockin mutations, display pronounced spindle positioning defects, and a prolonged mitosis. Restoring
FAM83D
at the endogenous locus in
FAM83D
−
/
−
cells, or artificially delivering CK1α to the spindle in
FAM83D
F283A/F283A
cells, rescues these defects. These findings implicate CK1α as new mitotic kinase that orchestrates the kinetics and orientation of cell division.