The membrane-bound respiratory chain components of alkalophiic Bacillus firmus RAB were studied by difference spectroscopy and oxidation-reduction potentiometric titrations. Cytochromes with the following midpoint potentials were identified at pH 9.0: a-type cytochromes, +110 and +210 mV; b-type cytochromes, +20,-120,-280, and-400 mV; and cytochrome c, +60 mV. Only the higher-potential cytochrome a showed an upward shift in midpoint potential when titrated at pH 7.0. Parallel studies of a non-alkalophilic mutant derivative of B. firmus RAB, strain RABN, revealed the presence of only one species each of a-, band nd c-type cytochromes which exhibited midpoint potentials of +110,-150, and +160 mV, respectively, at pH 7.0. Membranes of both strains were found to contain menaquinone. At pH 9.0, NADH caused the reduction of essentially all of the cytochromes that were seen in fully reduced preparations of wild-type B. firmus RAB membranes. By contrast, at pH 7.0, NADH failed to appreciably reduce the b-type cytochromes. These findings may relate to our recent proposal that an inadequacy in energy transduction (production of a proton motive force) by the alkalophilic respiratory chain at pH 7.0 is what precludes the growth of B. firmus RAB at a neutral pH.