Measurements of soot properties by means of laser-induced incandescence ͑LII͒ and combined scatteringextinction were performed in well-characterized premixed ethylene-air flames. In particular, the possibility of using LII as a tool for quantitative particle sizing was investigated. Particle sizes were evaluated from the temporal decay of the LII signal combined with heat balance modeling of laser-heated particles, and these sizes were compared with the particle sizes deduced from scattering-extinction measurements based on isotropic sphere theory. The correspondence was good early in the sootformation process but less good at later stages, possibly because aggregation to clusters began to occur. A critical analysis has been made of how uncertainties in different parameters, both experimental and in the model, affect the evaluated particle sizes for LII. A sensitivity analysis of the LII model identified the ambient-flame temperature as a major source of uncertainty in the evaluated particle size, a conclusion that was supported by an analysis based on temporal LII profiles.