Hyperspectral compressed imaging is a novel imaging detection technology based on compressed sensing theory that can quickly acquire spectral information of terrestrial objects in a single exposure. It combines reconstruction algorithms to recover hyperspectral data from low-dimensional measurement images. However, hyperspectral images from different scenes often exhibit high-frequency data sparsity and existing deep reconstruction algorithms struggle to establish accurate mapping models, leading to issues with detail loss in the reconstruction results. To address this issue, we propose a hyperspectral reconstruction method based on global gradient information and local low-rank priors. First, to improve the prior model’s efficiency in utilizing information of different frequencies, we design a gradient sampling strategy and training framework based on decision trees, leveraging changes in the loss function gradient information to enhance the model’s predictive capability for data of varying frequencies. Second, utilizing the local low-rank prior characteristics of the representative coefficient matrix, we develop a sparse sensing denoising module to effectively improve the local smoothness of point predictions. Finally, by establishing a regularization term for the reconstruction process based on the semantic similarity between the denoised results and prior spectral data, we ensure spatial consistency and spectral fidelity in the reconstruction results. Experimental results indicate that the proposed method achieves better detail recovery across different scenes, demonstrates improved generalization performance for reconstructing information of various frequencies, and yields higher reconstruction quality.