International audienceDendriform algebras form a category of algebras recently introduced by Loday. A dendriform algebra is a vector space endowed with two nonassociative binary operations satisfying some relations. Any dendriform algebra is an algebra over the dendriform op-erad, the Koszul dual of the diassociative operad. We introduce here, by adopting the point of view and the tools offered by the theory of operads, a generalization on a non-negative integer parameter γ of dendriform algebras, called γ-polydendriform algebras, so that 1-polydendriform algebras are dendriform algebras. For that, we consider the operads obtained as the Koszul duals of the γ-pluriassociative operads introduced by the author in a previous work. In the same manner as dendriform algebras are suitable devices to split associative operations into two parts, γ-polydendriform algebras seem adapted structures to split associative operations into 2γ operation so that some partial sums of these operations are associative. We provide a complete study of the γ-polydendriform operads, the underlying operads of the category of γ-polydendriform algebras. We exhibit several presentations by generators and relations, compute their Hilbert series, and construct free objects in the corresponding categories. We also provide consistent generalizations on a nonnegative integer parameter of the duplicial, triassociative and tridendriform operads, and of some operads of the operadic butterfly