Abstract:We extract a system of numerical invariants from logarithmic intersection theory on pluricanonical double ramification cycles, and show that these invariants exhibit a number of properties that are enjoyed by double Hurwitz numbers. Among their properties are (i) the numbers can be efficiently calculated by counts of tropical curves with a modified balancing condition, (ii) they are piecewise polynomial in the entries of the ramification vector, and (iii) they are matrix elements of operators on the Fock space… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.