Among the 12 P-type ATPases encoded by the genome of Mycobacterium tuberculosis(Mtb), CtpF responds to the greatest number of stress conditions, including oxidative stress, hypoxia, and infection. CtpF is the mycobacterial homolog of the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) of higher eukaryotes. Its expression is regulated by the global regulator of latency, DosR. However, the role that CtpF plays in the mycobacterial plasma membrane remains unknown. In this study, different functional analyses showed that CtpF is associated with calcium pumping from mycobacterial cells. Specifically, Mtb CtpF expression in Mycobacterium smegmatis cells prevents Ca2+ accumulation compared with wild type (WT) cells. In addition, plasma membrane vesicles from recombinant membranes, in which the direction of ion transport is inverted, accumulate more Ca2+ compared with vesicles obtained from the WT strain. This findings support the hypothesis that CtpF contributes to calcium efflux from mycobacterial cells. Accordingly, Mtb cells defective in ctpF (MtbΔctpF) accumulate more Ca2+ compared with WT cells, while the Ca2+-dependent ATPase activity is significantly lower in the mutant cells. Interestingly, the deletion of ctpF in Mtb impairs the tolerance of the bacteria to oxidative and nitrosative stress. Overall, our results indicate that CtpF is associated with calcium pumping from mycobacterial cells and the response to oxidative stress.