2007
DOI: 10.1109/cca.2007.4389227
|View full text |Cite
|
Sign up to set email alerts
|

PMV-Based Predictive Algorithms for Controlling Thermal Comfort in Building Plants

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
9
0
5

Year Published

2010
2010
2020
2020

Publication Types

Select...
6
1
1

Relationship

1
7

Authors

Journals

citations
Cited by 28 publications
(14 citation statements)
references
References 5 publications
0
9
0
5
Order By: Relevance
“…These must be obtained using previous predictions. This way, the computation of the predictions over a prediction horizon PH may require PH executions of model (6).…”
Section: Predictive Models Designmentioning
confidence: 99%
“…These must be obtained using previous predictions. This way, the computation of the predictions over a prediction horizon PH may require PH executions of model (6).…”
Section: Predictive Models Designmentioning
confidence: 99%
“…O presente artigo expande os trabalhos de Freire et al (2005b), Freire et al (2008), Donaisky et al (2007), Donaisky et al (2008) e Donaisky (2008 propondo dois algoritmos MBPC para o controle de conforto térmico baseado em PMV (PMV-MBPC). Os algoritmos são caracterizados pelos seguintes pontos: i) a entrada do processoé representada por um simples equipamento de climatização (um sinal de controle) e dois sensores internos para medir a temperatura e a umidade relativa; ii) oíndice PMVé considerado para promover conforto térmico aos ocupantes.…”
Section: Leis De Controle Preditivo Para Conforto Térmicounclassified
“…Alguns exemplos são os trabalhos de Kolokotsa et al (2001) e Gouda et al (2001), no contexto de algoritmos de controle PID (Proporcional, Integral e Derivativo) e Fuzzy. Por outro lado, oíndice PMV pode ser incluído na função custo para gerar uma lei de controle de conforto térmico baseado nos fundamentos do MBPC (Model Based Predictive Control ou Controle Preditivo Baseado em Modelo) (Freire et al, 2005a;Freire et al, 2005b;Freire et al, 2008;Donaisky et al, 2007;Donaisky et al, 2008;Donaisky, 2008).…”
Section: Introductionunclassified
“…• The majority are data-driven, relying on some sort of statistical regression [1], [5], [6], [7], [11], [12], [13], [15], [24], [27], and therefore are not generic enough. • Many BEMS methods focus on the optimization and control of individual subsystems, without considering interplay of the various systems.…”
Section: Introductionmentioning
confidence: 99%