POD-Galerkin reduced order models and physics-informed neural networks for solving inverse problems for the Navier-Stokes equations
Saddam Hijazi,
Melina Freitag,
Niels Landwehr
Abstract:We present a Reduced Order Model (ROM) which exploits recent developments in Physics Informed Neural Networks (PINNs) for solving inverse problems for the Navier-Stokes equations (NSE). In the proposed approach, the presence of simulated data for the fluid dynamics fields is assumed. A POD-Galerkin ROM is then constructed by applying POD on the snapshots matrices of the fluid fields and performing a Galerkin projection of the NSE (or the modified equations in case of turbulence modeling) onto the POD reduced b… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.