The Christmas tree hydroid Pennaria disticha is listed as one of the most common introduced species in Hawaii. Firstly reported in Kaneohe Bay (Oahu) in 1928, it is now established throughout the entire archipelago, including the Northwestern Hawaiian Islands, a U.S. National Monument and World Heritage site. The Hawaiian population of P. disticha has also been reported as being the source of further introductions to Palmyra Atoll in the U.S. Line Islands. Using a phylogenetic hypothesis based on a 611 base pair fragment of the mitochondrial 16S barcoding gene, we demonstrate that P. disticha is a complex of cryptic species, rather than one species with cosmopolitan distribution. We also show that in Hawaii there are three species of Pennaria, rather than one introduced species. Two of these species share haplotypes with specimens from distant locations such as Florida and Panama and may have been introduced, possibly from the Atlantic Ocean. A third species could either represent a lineage with nearly cosmopolitan distribution, or another introduced species. Our dataset refutes the widely accepted idea that only one lineage of P. disticha is present in Hawaii. On the contrary, P. disticha in Hawaii may be the outcome of multiple independent introductions of several morphologically undistinguishable cryptic lineages. Our results uncover an unsuspected complexity within the very common hydroid P. disticha, and highlight the need for routine use of molecular tools, such as DNA barcoding, to improve the identification and recognition of non-indigenous species.