2013
DOI: 10.1016/j.neucom.2013.02.039
|View full text |Cite
|
Sign up to set email alerts
|

Point and prediction interval estimation for electricity markets with machine learning techniques and wavelet transforms

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
13
1
1

Year Published

2016
2016
2023
2023

Publication Types

Select...
7
2

Relationship

0
9

Authors

Journals

citations
Cited by 20 publications
(15 citation statements)
references
References 41 publications
0
13
1
1
Order By: Relevance
“…El resultado es superior al obtenido por [10] en su estudio de los intervalos de confianza de las predicciones en los mercados de energía en el cual se obtuvieron PICP(%) entre 92.6 y 94.1%. El resultado obtenido es también superior al obtenido por [28] en su estudio de los intervalos de confianza de las predicciones de demanda del mercado eléctrico, los cuáles obtuvieron PICP(%) entre el 50% y el 100%.…”
Section: Discussionunclassified
“…El resultado es superior al obtenido por [10] en su estudio de los intervalos de confianza de las predicciones en los mercados de energía en el cual se obtuvieron PICP(%) entre 92.6 y 94.1%. El resultado obtenido es también superior al obtenido por [28] en su estudio de los intervalos de confianza de las predicciones de demanda del mercado eléctrico, los cuáles obtuvieron PICP(%) entre el 50% y el 100%.…”
Section: Discussionunclassified
“…Empirical studies in the Nordic Power Pool have shown the improved electricity demand and price forecasting accuracy [22]. Shrivastava and Panigrahi [23] used the wavelet analysis as a preprocessor to improve the forecasting accuracy of the extreme learning machine in the Ontario and PJM electricity market [23]. Nguyen and Nabney [24] showed that the combination of wavelet analysis and the neural network model would result in the improved electricity demand and natural gas forecasting accuracy [24].…”
Section: Multiscale Analysis In the Energy Marketsmentioning
confidence: 99%
“…In addition, some new adaptive growth methods of hidden nodes were proposed, including AG-ELM [9] and D-ELM [10]. Apart from optimization constraints of ELM, ELM has a wide range of applications in data classification [11], nonlinear dynamic systems identification [12], pattern recognition [13][14][15], expert diagnosis [16], medical diagnosis [17], modelling permeability prediction [18], expert target recognition [19], human face recognition [20], and prediction interval estimation of electricity markets [21]. However, there are still some problems that need to be studied.…”
Section: Introductionmentioning
confidence: 99%