2020
DOI: 10.48550/arxiv.2007.13715
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Point Cloud Based Reinforcement Learning for Sim-to-Real and Partial Observability in Visual Navigation

Abstract: Reinforcement Learning (RL), among other learning-based methods, represents powerful tools to solve complex robotic tasks (e.g., actuation, manipulation, navigation, etc.), with the need for real-world data to train these systems as one of its most important limitations. The use of simulators is one way to address this issue, yet knowledge acquired in simulations does not work directly in the real-world, which is known as the sim-to-real transfer problem. While previous works focus on the nature of the images … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 28 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?