A non-perturbative renormalization of a many-body problem, where nonrelativistic bosons living on a two-dimensional Riemannian manifold interact with each other via the two-body Dirac delta potential, is given by the help of the heat kernel defined on the manifold. After this renormalization procedure, the resolvent becomes a well-defined operator expressed in terms of an operator (called principal operator) which includes all the information about the spectrum. Then, the ground state energy is found in the mean-field approximation and we prove that it grows exponentially with the number of bosons. The renormalization group equation (or Callan-Symanzik equation) for the principal operator of the model is derived and the β function is exactly calculated for the general case, which includes all particle numbers.