Small-angle X-ray scattering (SAXS) has emerged as an enabling
integrative technique for comprehensive analyses of macromolecular structures
and interactions in solution. Over the past two decades, SAXS has become a
mainstay of the structural biologist’s toolbox, supplying multiplexed
measurements of molecular shape and dynamics that unveil biological function.
Here, we discuss evolving SAXS theory, methods, and applications that extend the
field of small-angle scattering beyond simple shape characterization. SAXS,
coupled with size-exclusion chromatography (SEC-SAXS) and time-resolved
(TR-SAXS) methods, is now providing high-resolution insight into macromolecular
flexibility and ensembles, delineating biophysical landscapes, and facilitating
high-throughput library screening to assess macromolecular properties and to
create opportunities for drug discovery. Looking forward, we consider SAXS in
the integrative era of hybrid structural biology methods, its potential for
illuminating cellular supramolecular and mesoscale structures, and its capacity
to complement high-throughput bioinformatics sequencing data. As advances in the
field continue, we look forward to proliferating uses of SAXS based upon its
abilities to robustly produce mechanistic insights for biology and medicine.