A novel coronavirus (SARS-CoV-2), causing an emerging coronavirus disease (COVID-19), first detected in Wuhan City, Hubei Province, China has resulted in an outbreak in China which has taken a catastrophic turn with high toll rates in China and subsequently spreading across the globe. The rapid spread of this virus to more than 175 countries while affecting nearly 500,000 persons and causing more than 22,000 human deaths, it has resulted in a pandemic situation in the world. The SARS-CoV-2 virus belongs to the genus Betacoronavirus, like MERS-CoV and SARS-CoV, all of which originated in bats. It is highly contagious, causing symptoms like fever, dyspnea, asthenia and pneumonia, thrombocytopenia and the severely infected patients succumb to the disease. Coronaviruses (CoVs) among all known RNA viruses have the largest genomes ranging from 26 to 32 kb in length. Extensive research has been conducted to understand the molecular basis of the SARS-CoV-2 infection and evolution, develop effective therapeutics, antiviral drugs and vaccines, and to design rapid and confirmatory viral diagnostics as well as adopt appropriate prevention and control strategies. Till date, no clinically proclaimed, proven therapeutic antibodies or specific drugs and therapeutics, and vaccines have turned up. Several molecular diagnostic tests such as Real Time-PCR, isothermal loop-mediated amplification of coronavirus (i-LACO), full genome analysis by next-generation sequencing (NGS), multiplex nucleic acid amplification, and microarray-based assays are in use currently for the laboratory confirmation of this CoV infection. In this review article, we describe the basic molecular organization and phylogenetic analysis of the coronaviruses, including the SARS-CoV-2, and recent advances in diagnosis and vaccine development in brief and focusing mainly on developing potential therapeutic options that can be explored to manage this pandemic virus infection, which would help in valid countering of COVID-19.