2011
DOI: 10.1134/s1560354711060025
|View full text |Cite
|
Sign up to set email alerts
|

Point vortices and polynomials of the Sawada-Kotera and Kaup-Kupershmidt equations

Abstract: Rational solutions and special polynomials associated with the generalized K 2 hierarchy are studied. This hierarchy is related to the Sawada -Kotera and Kaup -Kupershmidt equations and some other integrable partial differential equations including the Fordy -Gibbons equation. Differential -difference relations and differential equations satisfied by the polynomials are derived. The relationship between these special polynomials and stationary configurations of point vortices with circulations Γ and −2Γ is est… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
23
0
4

Year Published

2012
2012
2023
2023

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 19 publications
(27 citation statements)
references
References 30 publications
0
23
0
4
Order By: Relevance
“…Thus we see that solutions of (32) can be expressed via solutions of the first member of the K 2 hierarchy [25]. This equation admits rational solutions which are expressed via nonlinear special polynomials [17,18]. Let us present some rational solutions of (32).…”
Section: Self-similar Solutionsmentioning
confidence: 99%
See 1 more Smart Citation
“…Thus we see that solutions of (32) can be expressed via solutions of the first member of the K 2 hierarchy [25]. This equation admits rational solutions which are expressed via nonlinear special polynomials [17,18]. Let us present some rational solutions of (32).…”
Section: Self-similar Solutionsmentioning
confidence: 99%
“…This equation admits rational solutions that are expressed via nonlinear special polynomials [17,18]. We can also construct rational solutions of (40) using special polynomials from work [17] and Miura transformation (43).…”
Section: Self-similar Solutionsmentioning
confidence: 99%
“…Полиномиальные решения при µ = 1, µ = 2 из-вестны (см. [5][6][7][8]). Уравнение (10) инвариантно относительно преобразования z → αz + β, α = 0, поэтому, без ограничения общности, будем считать, что полином P 2 (z) всегда имеет ноль в начале координат.…”
Section: полиномиальный методunclassified
“…Для описания рациональных решений уравнения Кортевега -де Вриза М. Адлер и Ю. Мозер ввели семейство полиномов, которые, как оказалось, удо-влетворяют уравнению Ткаченко [6]. Связь полиномов, описывающих статические вихревые конфигурации, с некоторыми другими интегрируемыми дифференциаль-ными уравнениями подробно рассматривается в работе [7].…”
unclassified
“…Roots of the polynomial S(z) give positions of vortices with circulation Γ and roots of the polynomial T (z) give positions of vortices with circulation −µΓ. The case µ = 2 was studied in details in the articles [12,14].…”
Section: Stationary Equilibria Of Point Vorticesmentioning
confidence: 99%