Pointing error is a critical performance metric for vehicle-mounted single-photon ranging theodolites (VSRTs). Achieving high-precision pointing through processing and adjustment can incur significant costs. In this study, we propose a cost-effective digital correction method based on a piecewise linear regression model to mitigate this issue. Firstly, we introduce the structure of a VSRT and conduct a comprehensive analysis of the factors influencing its pointing error. Subsequently, we develop a physically meaningful piecewise linear regression model that is both physically meaningful and capable of accurately estimating the pointing error. We then calculate and evaluate the regression equation to ensure its effectiveness. Finally, we successfully apply the proposed method to correct the pointing error. The efficacy of our approach has been substantiated through dynamic accuracy testing of a 450 mm optical aperture VSRT. The findings illustrate that our regression model diminishes the root mean square (RMS) value of VSRT’s pointing error from 17″ to below 5″. Following correction utilizing this regression model, the pointing error of VSRT can be notably enhanced to the arc-second precision level.