In this study, we attain some existence characterizations for warped product pointwise semi slant submanifolds in the setting of Sasakian space forms. Moreover, we investigate the estimation for the squared norm of the second fundamental form and further discuss the case of equality. By the application of attained estimation, we obtain some classifications of these warped product submanifolds in terms of Ricci soliton and Ricci curvature. Further, the formula for Dirichlet energy of involved warping function is derived. A nontrivial example of such warped product submanifolds is also constructed. Throughout the paper, we will use the following acronyms: “WP” for warped product, “WF” for warping function, “AC” for almost contact, and “WP-PSS” for the warped product pointwise semi slant.