Modelling, simulation, and applications of Fractional Calculus have recently become increasingly popular subjects, with impressive growth concerning applications. The founding and limited ideas on fractional derivatives have achieved an incredibly valuable status. The variety of applications in mathematics, physics, engineering, economics, biology, and medicine, have opened new, challenging fields of research. For instance, in soil mechanics, a suitable definition of the fractional operator has shed some light on viscoelasticity, explaining memory effects on materials. Needless to say, these applications require the development of practical mathematical tools in order to extract quantitative information from models, newly reformulated in terms of fractional differential equations. Even confining ourselves to the field of ordinary differential equations, the well-known Bagley-Torvik model showed that fractional derivatives may actually arise naturally within certain physical models, and are not merely fanciful mathematical generalizations. This Special Issue focuses on the most recent advances in fractional calculus, applied to dynamic problems, linear and nonlinear fractional ordinary and partial differential equations, integral fractional differential equations, and stochastic integral problems arising in all fields of science, engineering, and other applied fields. In this issue, we have collected several significant papers devoted to applications of fractional methods with a focus on dynamical aspects. The applications range from theoretical mathematical-numerical aspects [1,2] to bio-medical subjects [3-7]. Applications to complex materials are investigated in [8], aiming at proposing a generalized definition of fractional operators. Special diffusion models are studied in [9-11].