“…Since g ∈ S is a solution of the first Kashiwara-Vergne equation, its associator (13) satisfies Φ g ∈ SAut 3 . Set ω = C(g) and apply the cocycle C to the equation g 2,3 g 1,23 = g 1,2 g 12,3 Φ g to get 0 = C(g 2,3 g 1,23 ) − C(g 1,2 g 12,3 ) = (ω 2,3 + g 2,3 .ω 1,23 ) − (ω 1,2 + g 1,2 .ω 12,3 + (g 1,2 g 12,3 ).C(Φ g )) = (ω(x 2 , x 3 ) + g 2,3 .ω(x 1 , x 2 + x 3 )) − (ω(x 1 , x 2 ) + g 1,2 .ω(x 1 + x 2 , x 3 ) + (g 1,2 g 12,3 ).C(Φ g )) = (ω(x 2 , x 3 ) + ω(x 1 , log(e x2 e x3 ))) − (ω(x 1 , x 2 ) + ω(log(e x1 e x2 ), x 3 ) + (g 1,2 g 12,3 ).C(Φ g )) = ∆(ω) − (g 1,2 g 12,3 ).C(Φ g ).…”