Many modern applications of the flexible multibody systems require formulations that can effectively solve problems that include large displacements and deformations having the ability to model nonlinear materials. One method that allows dealing with such systems is continuum-based absolute nodal coordinate formulation (ANCF). The objective of this study is to formulate an efficient method of modeling nonlinear nearly incompressible materials with polynomial Mooney-Rivlin models and volumetric energy penalty function in the framework of the ANCF. The main part of this paper is dedicated to the examination of several ANCF fully parameterized beam elements under incompressible regime. Moreover, two volumetric suppression methods, originating in the finite element analysis, are proposed: a well-known selective reduced integration and F-bar projection. It is also presented that the use of these methods is crucial for performing reliable analysis of models with bending-dominated loads when lower-order elements are employed. The results of the simulations carried on with considered elements and proposed methods are compared with the results obtained from commercial finite element package and existing ANCF implementation. The results