Abstract:A proper isometric Lie group action on a Riemannian manifold is called polar if there exists a closed connected submanifold which meets all orbits orthogonally. In this article we study polar actions on Damek-Ricci spaces. We prove criteria for isometric actions on Damek-Ricci spaces to be polar, find examples and give some partial classifications of polar actions on Damek-Ricci spaces. In particular, we show that non-trivial polar actions exist on all Damek-Ricci spaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.