Emergent phenomena, including superconductivity and magnetism, found in the two-dimensional electron liquid (2-DEL) at the interface between the insulators lanthanum aluminate (LaAlO 3 ) and strontium titanate (SrTiO 3 ) distinguish this rich system from conventional 2D electron gases at compound semiconductor interfaces. The origin of this 2-DEL, however, is highly debated, with focus on the role of defects in the SrTiO 3 , while the LaAlO 3 has been assumed perfect. Here we demonstrate, through experiments and firstprinciple calculations, that the cation stoichiometry of the nominal LaAlO 3 layer is key to 2-DEL formation: only Al-rich LaAlO 3 results in a 2-DEL. Although extrinsic defects, including oxygen deficiency, are known to render LaAlO 3 /SrTiO 3 samples conducting, our results show that in the absence of such extrinsic defects an interface 2-DEL can form. Its origin is consistent with an intrinsic electronic reconstruction occurring to counteract a polarization catastrophe. This work provides insight for identifying other interfaces where emergent behaviours await discovery.