Video synthetic aperture radar (ViSAR) can provide long-time surveillance of a region of interest (ROI), which is one of the hotspot directions in the SAR field. In order to better display ViSAR, a high resolution and high frame rate are needed. Azimuth integration angle and sub-aperture overlapping ratio, which determine the image resolution and frame rate, respectively, are analyzed in depth in this paper. For SAR imaging algorithm, polar format algorithm (PFA) is applied, which not only has high efficiency but is also easier to integrate with autofocus algorithms. Due to sensitivity to motion error, it is very difficult to obtain satisfactory focus quality, especially for SAR systems with a high carrier frequency. The three-step motion compensation (MOCO) proposed in this paper, which combines GPS-based MOCO, map-drift (MD) and phase gradient autofocus (PGA), can effectively compensate for motion error, especially for short wavelengths. In ViSAR, problems such as jitter, non-uniform grey scale and low image signal noise ratio (SNR) between different aspects images also need to be considered, so a ViSAR generation method is proposed to solve the above problems. Finally, the results of ViSAR in THz and Ku band demonstrate the effectiveness and practicability of the proposed method.