Perovskite oxides degrade at elevated temperatures while precipitating dopant-rich particles on the surface. A knowledge-based improvement of surface stability requires a fundamental and quantitative understanding of the dopant precipitation mechanism on these materials. We propose that dopant precipitation is a consequence of the variation of dopant solubility between calcination and operating conditions in solid oxide fuel cells (SOFCs) and electrolyzer cells (SOECs). To study dopant precipitation, we use 20% (D = Ca, Sr, Ba)-doped LaMnO 3+δ (LDM20) as a model system. We employ a defect model taking input from density functional theory calculations. The defect model considers the equilibration of LDM20 with a reservoir consisting of dopant oxide (DO), peroxide (DO 2 ), and O 2 in the gas phase. The equilibrated non-stoichiometry of the A-site and B-site as a function of temperature, T, and oxygen partial pressure, p(O 2 ), reveals three regimes for LDM20: A-site deficient (oxidizing conditions), A-site rich (atmospheric conditions), and near-stoichiometric (reducing conditions). Assuming an initial A/B non-stoichiometry, we compute the dopant precipitation boundaries in a p-T phase diagram. Our model predicts precipitation both under reducing (DO) and under highly oxidizing conditions (DO 2 ). We found precipitation under anodic, SOEC conditions to be promoted by large dopant size, while under cathodic, SOFC conditions precipitation is promoted by initial A-site excess. The main driving forces for precipitation are oxygen uptake by the condensed phase under oxidizing conditions and oxygen release assisted by B-site vacancies under reducing conditions. Possible strategies for mitigating dopant precipitation under in electrolytic and fuel cell conditions are discussed.