[1] In this article we present a review of recent studies of observations of localized energy conversion regions (ECRs) observed by Cluster in the plasma sheet at altitudes of 15-20R E . By examining variations in the power density, E · J, where E is the electric field and J is the current density, we show that the plasma sheet exhibits a high level of fine structure. Approximately three times as many concentrated load regions (CLRs) (E · J > 0) as concentrated generator regions (CGRs) (E · J < 0) are identified, confirming the average load character of the plasma sheet. Some ECRs are found to relate to auroral activity. While ECRs are relevant for the energy conversion between the electromagnetic field and the particles, bursty bulk flows (BBFs) play a central role for the energy transfer in the plasma sheet. We show that ECRs and BBFs are likely to be related, although details of this relationship are yet to be explored. The plasma sheet energy conversion increases rather simultaneously with increasing geomagnetic activity in both CLRs and CGRs. Consistent with large-scale magnetotail simulations, most of the observed ECRs appear to be rather stationary in space but varying in time. We estimate that the ECR lifetime and scale size are a few minutes and a few R E , respectively. It is conceivable that ECRs rise and vanish locally in significant regions of the plasma sheet, possibly oscillating between load and generator character, while some energy is transmitted as Poynting flux to the ionosphere.