2014
DOI: 10.3389/fninf.2014.00027
|View full text |Cite
|
Sign up to set email alerts
|

Polarity-specific high-level information propagation in neural networks

Abstract: Analyzing the connectome of a nervous system provides valuable information about the functions of its subsystems. Although much has been learned about the architectures of neural networks in various organisms by applying analytical tools developed for general networks, two distinct and functionally important properties of neural networks are often overlooked. First, neural networks are endowed with polarity at the circuit level: Information enters a neural network at input neurons, propagates through interneur… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

0
9
0

Year Published

2015
2015
2023
2023

Publication Types

Select...
4
1

Relationship

1
4

Authors

Journals

citations
Cited by 6 publications
(9 citation statements)
references
References 49 publications
(73 reference statements)
0
9
0
Order By: Relevance
“…We hypothesize that although the global structural properties examined in the foregoing analysis may not be altered by the presence of atypical neurons, they are still likely to change certain network properties which can be revealed by analyzing information propagation in the network. To this end, we examined the connection matrices at high propagation levels (Lin et al, 2014) (see Section Methods). We discovered that while the connection matrices of the observed and model networks are very similar at the low propagation levels (levels 0 and 1), the difference between the two networks dramatically increases at the high levels (level 2 and above) (Figures 3A,B).…”
Section: Resultsmentioning
confidence: 99%
See 4 more Smart Citations
“…We hypothesize that although the global structural properties examined in the foregoing analysis may not be altered by the presence of atypical neurons, they are still likely to change certain network properties which can be revealed by analyzing information propagation in the network. To this end, we examined the connection matrices at high propagation levels (Lin et al, 2014) (see Section Methods). We discovered that while the connection matrices of the observed and model networks are very similar at the low propagation levels (levels 0 and 1), the difference between the two networks dramatically increases at the high levels (level 2 and above) (Figures 3A,B).…”
Section: Resultsmentioning
confidence: 99%
“…Large path numbers at the high levels have been shown to be the result of feedback (recurrent) connections (Lin et al, 2014). Given that the input neuron class EIP receives strong feedback from the output neuron classes PEN and PEI in EB (Figure 1B), we conjectured that the increase of the path numbers in the observed network mainly results from the atypical neuron-dependent strengthening of the feedback circuits between EB and PB.…”
Section: Resultsmentioning
confidence: 99%
See 3 more Smart Citations