Two resonators in metamaterial usually correspond only to two absorption peaks. In this report, by breaking the symmetry, we could create multi-fundamental resonances at GHz frequencies in both simulation and experiment. First, a dual-band metamaterial absorber (MA) was achieved for 4.6 and 10.6 GHz. Next, by modifying the relative position of inner square, the triple-band MA was obtained with enhanced absorption properties. In addition, dependence on the polarization of the incident electromagnetic (EM) wave was clarified. The mechanism is elucidated to be an alteration of the coupling strength, which is made by changing the geometrical configuration of the inner square and the outer ring. It is shown that our structural configuration can be applied to the fields where the interaction with a wide range of EM waves exists or is needed.