Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The interference images with fixed spectral resolution can be obtained by using the existing static polarization-difference imaging system because the optical path of the system cannot be changed flexibly. However, for different detection targets, the spectral resolution of the system determined by the optical path difference must be appropriate. To satisfy a variety of application requirements, a novel dual channel polarization-difference interference imaging system (DPDⅡS), based on the lateral shear of the wide-field-of-view Savart polariscope (WSP) and the modulated Savart polariscope (MSP), is presented. The two-dimensional space images of a target and orthogonal interference images can be obtained by adjusting the MSP under different lateral displacements simultaneously. In addition, the remarkable characteristics of the system avoid spilling over rays and optimizing the system optical path effectively. In this paper, by using the Jones matrix, the system structure is demonstrated and the theoretical principle of DPDⅡS is analyzed in detail. The amplitudes of the four beams from the MSP and the interference intensity expressions of the coherent light are derived. Then the splitting characteristics of the Savart polariscope (SP) and WSP are presented. It is concluded that the WSP has better shear ability than SP and the WSP can optimize the optical path effectively compared with Wollaston prism in the DPDⅡS. The change ranges of the optical path difference and lateral displacement produced by the MSP for structure angles =/3, /4, /6 are analyzed in detail. The reconstructed orthogonal interferograms and the experimental interferograms under 632.8 nm monochromatic light for dMSP=1.00, 1.10, 1.20, 1.30 mm are obtained. A comparison between the experimental interference images and the simulated images proves that the interference fringes with different resolutions can be obtained simultaneously by adjusting the MSP. Meanwhile, the light intensities of the double optical paths are approximately equal and the same optical path difference is generated for the dual channel with the movement of MSP. The experimental results are consistent with the theoretical analyses. The spatial images of parallel and vertical components are detected under 632.8 nm polychromatic light. Then the total intensity image and the polarization-difference image are obtained through data processing. The conclusion that the polarization difference intensity image has a high resolution compared with the polarization intensity image is presented. The study has reference significance and practical value for the dual channel polarization interference imaging system.
The interference images with fixed spectral resolution can be obtained by using the existing static polarization-difference imaging system because the optical path of the system cannot be changed flexibly. However, for different detection targets, the spectral resolution of the system determined by the optical path difference must be appropriate. To satisfy a variety of application requirements, a novel dual channel polarization-difference interference imaging system (DPDⅡS), based on the lateral shear of the wide-field-of-view Savart polariscope (WSP) and the modulated Savart polariscope (MSP), is presented. The two-dimensional space images of a target and orthogonal interference images can be obtained by adjusting the MSP under different lateral displacements simultaneously. In addition, the remarkable characteristics of the system avoid spilling over rays and optimizing the system optical path effectively. In this paper, by using the Jones matrix, the system structure is demonstrated and the theoretical principle of DPDⅡS is analyzed in detail. The amplitudes of the four beams from the MSP and the interference intensity expressions of the coherent light are derived. Then the splitting characteristics of the Savart polariscope (SP) and WSP are presented. It is concluded that the WSP has better shear ability than SP and the WSP can optimize the optical path effectively compared with Wollaston prism in the DPDⅡS. The change ranges of the optical path difference and lateral displacement produced by the MSP for structure angles =/3, /4, /6 are analyzed in detail. The reconstructed orthogonal interferograms and the experimental interferograms under 632.8 nm monochromatic light for dMSP=1.00, 1.10, 1.20, 1.30 mm are obtained. A comparison between the experimental interference images and the simulated images proves that the interference fringes with different resolutions can be obtained simultaneously by adjusting the MSP. Meanwhile, the light intensities of the double optical paths are approximately equal and the same optical path difference is generated for the dual channel with the movement of MSP. The experimental results are consistent with the theoretical analyses. The spatial images of parallel and vertical components are detected under 632.8 nm polychromatic light. Then the total intensity image and the polarization-difference image are obtained through data processing. The conclusion that the polarization difference intensity image has a high resolution compared with the polarization intensity image is presented. The study has reference significance and practical value for the dual channel polarization interference imaging system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.