Flexible and mechanically robust gel-like electrolytes offer enhanced energy storage capabilities, versatility, and safety in batteries and supercapacitors. However, the trade-off between ion conduction and mechanical robustness remains a challenge for these materials. Here, we suggest that the introduction of ionic hyperbranched polymers in structured sustained ionogels will lead to both enhanced ion conduction and mechanical performance because of the hyperbranched polymers' ionically conductive groups and the complementary interfacial interactions with ionic liquids. More specifically, we investigate the effect of hyperbranched polymers with carboxylate terminal groups and imidazolium counterions with various ionic group densities on the properties of ionogels composed of coassembled cellulose nanofibers (CNFs) and cellulose nanocrystals (CNCs) as sustainable open pore frame for ionic liquid immersion. The addition of hyperbranched polymers leads to the formation of highly interconnected openly porous, lightweight, and shape-persistent materials by harnessing hydrogen bonding between the polymers and the CNFs/CNCs "frame". Notably, these materials possess a 2-fold improvement in ionic conductivity combined with many-fold increase in Young's modulus, tensile strength, and toughness, making them comparable to common reinforced nanocomposite materials. Furthermore, the corresponding thin-film gel supercapacitors possess enhanced electrochemical cycling stability upon repeated bending with an 85% capacitance retention after 10 000 cycles, promising new insight in the development of simultaneously conductive and flexible gel electrolytes with sustained performance.