Recent radar observations have suggested that polar cap flows are highly structured and that localized flow enhancements can lead to nightside auroral disturbances. However, knowledge of these flows is limited to available echo regions. Utilizing wide spatial coverage by an all-sky imager at Resolute Bay and simultaneous Super Dual Auroral Radar Network measurements, we statistically determined properties of such flows and their interplanetary magnetic field (IMF) dependence. We found that narrow flow enhancements are well collocated with airglow patches with substantially larger velocities (≥200 m/s) than the weak large-scale background flows. The flow azimuthal widths are similar to the patch widths. During the evolution across the polar cap, the flow directions and speeds are consistent with the patch propagation directions and speeds. These correspondences indicate that patches can optically trace localized flow enhancements reflecting the flow width, speed, and direction. Such associations were found common (~67%) in statistics, and the typical flow speed, propagation time, and width within our observation areas are 600 m/s, tens of minutes, and 200-300 km, respectively. By examining IMF dependence of the occurrence and properties of these flows, we found that they tend to be observed under B y -dominated IMF. Flow speeds are large under oscillating IMF clock angles. Localized flow enhancements are usually observed as a channel elongated in the noon-midnight meridian and directed toward premidnight (postmidnight) for +B y (ÀB y ). The potential drops across localized flow enhancements account for~10-40% of the cross polar cap potential, indicating that they significantly contribute to polar cap plasma transport.