Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Longyearbyen is the major administrative, touristic, and scientific centre in Svalbard and so‐called ‘European Gateway’ to the Arctic. The number of inhabitants and tourists as well as community infrastructure has significantly expanded over the recent decade, and present‐day community faces development thresholds associated with climate warming and disturbance of cold region landscape. Coastal zone is a key interface where severe environmental changes impact directly on Longyearbyen infrastructure. We applied the combination of environmental assessment methods and geographic information system analyses together with field mapping to investigate the scale of degradation of coastal zone in Longyearbyen and examine the impact of coastal hazards on major elements of community infrastructure. Rate of observed coastal changes, the diversity of natural and man‐made hazards mapped along the coast, and observed damages in infrastructure suggest a need for coastal change monitoring and coastal protection in Longyearbyen. The part of the Longyearbyen coast that should be monitored and protected are sections spreading between new port and surroundings of Longyearelva delta significantly modified by coastal erosion and landsliding. In order to improve coastal zone protection and safety of town development, we present arguments supporting the incorporation of Longyearbyen into recently established Circum‐Arctic Coastal Communities Knowledge Network.
Longyearbyen is the major administrative, touristic, and scientific centre in Svalbard and so‐called ‘European Gateway’ to the Arctic. The number of inhabitants and tourists as well as community infrastructure has significantly expanded over the recent decade, and present‐day community faces development thresholds associated with climate warming and disturbance of cold region landscape. Coastal zone is a key interface where severe environmental changes impact directly on Longyearbyen infrastructure. We applied the combination of environmental assessment methods and geographic information system analyses together with field mapping to investigate the scale of degradation of coastal zone in Longyearbyen and examine the impact of coastal hazards on major elements of community infrastructure. Rate of observed coastal changes, the diversity of natural and man‐made hazards mapped along the coast, and observed damages in infrastructure suggest a need for coastal change monitoring and coastal protection in Longyearbyen. The part of the Longyearbyen coast that should be monitored and protected are sections spreading between new port and surroundings of Longyearelva delta significantly modified by coastal erosion and landsliding. In order to improve coastal zone protection and safety of town development, we present arguments supporting the incorporation of Longyearbyen into recently established Circum‐Arctic Coastal Communities Knowledge Network.
Plastic production and plastic waste have increased to such an extent that it has become globally ubiquitous. Recent research has highlighted that it has also invaded remote Polar Regions including the Arctic, where it is expected to accumulate over time due to transport from distant sources, rising local anthropogenic activities and increasing fragmentation of existing ocean plastics to microplastics (plastic items <5 mm). While a growing body of research has documented microplastics in the atmosphere, cryosphere, sea surface, water column, sediments and biota, contamination levels on Arctic beaches are poorly known. To fill this knowledge gap, we engaged citizen scientists participating in tourist cruises to sample beach sediments during shore visits on Svalbard, Norway. Following drying, sieving, and visual inspection of samples under a binocular microscope, putative plastic particles ≥1 mm were analysed by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. Plastic particles ≥1 mm were found in two out of 53 samples from 23 beaches (mean: 196.3 particles kg−1 and 147.4 particles L−1). These pollution levels could be due to our focus on plastic particles ≥1 mm as well as the relatively small sample sizes used during this initial phase of the project. In addition, the coarse substrate on most beaches might retain fewer plastic particles. The two samples with plastic particles ≥1 mm contained six polyester-epoxide particles and 4920 polypropylene fibres. The latter likely originated from a fishing net and points to possibly accelerated plastic fragmentation processes on Arctic beaches. Since fisheries-related debris is an important source of plastic on Svalbard, a build-up of microplastic quantities can be expected to burden Arctic ecosystems in addition to climate change unless efficient upstream action is taken to combat plastic pollution.
Plastic debris is ubiquitous in all ecosystems and has even reached locations that humans will hardly reach such as the deep ocean floor and the atmosphere. Research has highlighted that plastic debris is now pervasive even in remote Arctic regions. While modeling projections indicated local sources and long-distance transport as causes, empirical data about its origin and sources are scarce. Data collected by citizen scientists can increase the scale of observations, especially in such remote regions. Here, we report abundance and composition data of marine debris collected by citizen scientists on 14 remote Arctic beaches on the Spitsbergen archipelago. In addition, citizen scientists collected three large, industrial sized canvas bags (hereafter: big packs), filled with beached debris, of which composition, sources and origin were determined. A total debris mass of 1,620 kg was collected on about 38,000 m2 (total mean = 41.83 g m-2, SEM = ± 31.62). In terms of abundance, 23,000 pieces of debris were collected on 25,500 m2 (total mean = 0.37 items of debris m-2, SEM = ± 0.17). Although most items were plastic in both abundance and mass, fisheries waste, such as nets, rope, and large containers, dominated in mass (87%), and general plastics, such as packaging and plastic articles, dominated in abundance (80%). Fisheries-related debris points to local sea-based sources from vessels operating in the Arctic and nearby. General plastics could point to both land- and ship based sources, as household items are also used on ships and debris can be transported to the north via the oceans current. Overall, 1% of the items (206 out of 14,707 pieces) collected in two big packs (2017 and 2021), bore imprints or labels allowing an analysis of their origin. If the categories ‘global’ and ‘English language’ were excluded, most of identifiable items originated from Arctic states (65%), especially from Russia (32%) and Norway (16%). But almost a third of the items (30%) was of European provenance, especially from Germany (8%). Five percent originated from more distant sources (e.g. USA, China, Korea, Brazil). Global measures such as an efficient and legally binding plastic treaty with improved upstream measures and waste management are urgently needed, to lower the amount of plastic entering our environments and in turn lifting the pressure on the Arctic region and its sensitive biota.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.