Abstract:The objective of this study was to investigate the concentration and spatial distribution patterns of 9 potentially toxic heavy metal elements (As, Cd, Co, Cr, Pb, Cu, Zn, Mn, and Ni) in road dust in the Bayan Obo Mining Region in Inner Mongolia, China. Contamination levels were evaluated using the geoaccumulation index and the enrichment factor. Human health risks for each heavy metal element were assessed using a human exposure model. Results showed that the dust contained significantly elevated heavy metal elements concentrations compared with the background soil. The spatial distribution pattern of all tested metals except for As coincided with the locations of industrial areas while the spatial distribution of As was associated with domestic sources. The contamination evaluation indicated that Cd, Pb, and Mn in road dust mainly originated from anthropogenic sources with a rating of "heavily polluted" to "extremely polluted," whereas the remaining metals originated from both natural and anthropogenic sources with a level of "moderately polluted". The non-cancer health risk assessment showed that ingestion was the primary exposure route for all metals in the road dust and that Mn, Cr, Pb, and As were the main contributors to non-cancer risks in both children and adults. Higher HI values were calculated for children (HI=1.89), indicating that children will likely experience higher health risks compared with adults (HI=0.23). The cancer risk assessment showed that Cr was the main contributor, with cancer risks which were 2-3 orders of magnitude higher than those for other metals. Taken in concert, the non-cancer risks posed by all studied heavy metal elements and the cancer risks posed by As, Co, Cr, Cd, and Ni to both children and adults in Bayan Obo Mining Region fell within the acceptable range.