Background: Geogenic and anthropogenic activities such as Artisanal and illegal gold mining continue to have negative impacts on the environment and river basins in China. This work studied the hydrogeochemical characteristics of surface water from the Birim River basin and assess the quality of water for human consumption and agricultural activities. In addition, the ecological risk assessment for Cd, Zn, Pb and As in sediment was evaluated using pollution indices.
Results:The results show that the turbidity, temperature, colour and iron concentration in the water samples were above the World Health Organization guidelines. Multivariate analysis explained five components that accounted for 98.15% of the overall hydrogeochemistry and affected by anthropogenic and geogenic impacts. The surface water was observed to range from neutral to mildly acidic, with the dominance of HCO 3, and Na + in ionic strength. The Piper diagram reveals five major surface water types: Na-HCO 3 -Cl, Na-Cl-HCO 3 , Na-Ca-Mg-HCO 3 , Na-Ca-Mg-HCO 3 and Ca-Na-Mg-HCO 3 . The Gibbs plot showed that the major ion chemistry of surface water was mostly influenced by atmospheric precipitation and the water quality index showed that the majority of the surface water from settlements within the Birim River basin were of poor quality for drinking and other domestic purposes. However, irrigation suitability calculations with reference to sodium adsorption ratio, residual sodium carbonate, and magnesium ratio values, together with Wilcox and USSL models indicated that the surface water within the area under study was suitable for agriculture. The potential ecological risk for single heavy metals pollution and potential toxicity response indices gave low to considerable ecological risks for the sediments, with greater contributions from Cd, Pb and As. Whilst geo-accumulation indices indicated that the sediments ranged from unpolluted to moderately polluted Modified degree of pollution and Nemerow pollution index calculations which incorporate multi-element effects, however, indicated no pollution.
Conclusion:There are some levels of both potential ecological risks and health hazards in the study area. Hence continuous monitoring should be undertaken by the relevant agencies and authorities so that various interventions could be put in place to prevent the situation from deteriorating further in order to protect the inhabitants of the settlements within the Birim River basin.