The non-structural protein 5A (NS5A) is a hepatitis C virus (HCV) protein indispensable for the viral life cycle. Many prior papers have pinpointed several serine residues in the low complexity sequence I region of NS5A responsible for NS5A phosphorylation; however, the functions of specific phosphorylation sites remained obscure. Using phosphoproteomics, we identified three phosphorylation sites (serines 222, 235, and 238) in the NS5A low complexity sequence I region. Reporter virus and replicon assays using phosphorylation-ablated alanine mutants of these sites showed that Ser-235 dominated over Ser-222 and Ser-238 in HCV replication. Immunoblotting using an Ser-235 phosphorylation-specific antibody showed a time-dependent increase in Ser-235 phosphorylation that correlated with the viral replication activity. Ser-235 phosphorylated NS5A co-localized with double-stranded RNA, consistent with its role in HCV replication. Mechanistically, Ser-235 phosphorylation probably promotes the replication complex formation via increasing NS5A interaction with the human homologue of the 33-kDa vesicle-associated membrane protein-associated protein. Casein kinase I␣ (CKI␣) directly phosphorylated Ser-235 in vitro. Inhibition of CKI␣ reduced Ser-235 phosphorylation and the HCV RNA levels in the infected cells. We concluded that NS5A Ser-235 phosphorylated by CKI␣ probably promotes HCV replication via increasing NS5A interaction with the 33-kDa vesicle-associated membrane protein-associated protein.Chronic HCV 2 infection affects 130 -170 million people worldwide (1). The infection is often asymptomatic until development of severe liver diseases, including fibrosis, cirrhosis, and hepatocellular carcinoma, making chronic HCV infection the most common cause of liver transplant (2). HCV is an enveloped virus with a positive, single-stranded RNA genome encoding three structural (core, E1, and E2) and seven non-structural (p7, NS2, NS3, NS4A, NS4B, NS5A, and NS5B) proteins (1). The structural proteins together with the host membranes make up the viral particles, whereas the non-structural proteins are required for a complete life cycle. Already, there are several approved highly efficient HCV antivirals targeting non-structural proteins, including NS3/4A protease inhibitors (boceprevir, telaprevir, and simeprevir) and an NS5B RNA-dependent RNA polymerase inhibitor (sofosbuvir) (3). However, their high costs prohibit their accessibility to most patients (4). New competitive alternatives are desirable.NS5A is a multitasking protein required for the HCV life cycle and thus a good antiviral target (5). It is a phosphoprotein that appears as two bands at 56 and 58 kDa on immunoblots, respectively, referred to as hypophosphorylated (p56) and hyperphosphorylated (p58) NS5A (6). NS5A interacts with many viral and host proteins and participates in various aspects of the viral life cycle (7). For example, NS5A was reported to interact with the hVAP-A protein that takes part in the replication protein complex formation (8 -10). NS5A mutatio...