2020
DOI: 10.1007/978-3-030-59082-6_1
|View full text |Cite
|
Sign up to set email alerts
|

PolSentiLex: Sentiment Detection in Socio-Political Discussions on Russian Social Media

Abstract: Automatic assessment of sentiment in large text corpora is an important goal in social sciences. This paper describes a methodology and the results of the development of a system for Russian language sentiment analysis that includes: a publicly available sentiment lexicon, a publicly available test collection with sentiment markup and a crowdsourcing website for such markup. The lexicon is aimed at detecting sentiment in user-generated content (blogs, social media) related to social and political issues. Its p… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
3
0
1

Year Published

2022
2022
2023
2023

Publication Types

Select...
3
1
1

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(4 citation statements)
references
References 22 publications
0
3
0
1
Order By: Relevance
“…The corpus of restaurant reviews was expanded as part of the Russian track at the SemEval-2016 7 international competition [36]. Corpora of social media posts LinisCrowd 8 [37] and RuSentiment 9 [38], corpora of hotel reviews Russian Hotel Reviews 10 [39] and reviews about women's 3 http://romip.ru/ru/2011/index.html. 4 clothing and accessories RuReviews 11 [40] appeared later.…”
Section: ) Existing Russian Corporamentioning
confidence: 99%
“…The corpus of restaurant reviews was expanded as part of the Russian track at the SemEval-2016 7 international competition [36]. Corpora of social media posts LinisCrowd 8 [37] and RuSentiment 9 [38], corpora of hotel reviews Russian Hotel Reviews 10 [39] and reviews about women's 3 http://romip.ru/ru/2011/index.html. 4 clothing and accessories RuReviews 11 [40] appeared later.…”
Section: ) Existing Russian Corporamentioning
confidence: 99%
“…В экспериментах с разработанным алгоритмом удалось достичь 𝐹 1 -меры, равной 0.80, что является существенным шагом вперёд в анализе тональности предложений публицистического стиля. В более ранних работах, посвящённых данному вопросу (например, [17], в которой использовался SentiStrength) была получена 𝐹 1 -мера, равная 0.60. Для английского языка существуют подходы, позволяющие добиться сравнимой с предложенным алгоритмом 𝐹 1 -меры, в частности, 0.76 для новостных текстов [18] при использовании LSTM и 0.71 для предложений из LiveJournal [19] при использовании набора правил, построенного с помощью генетического программирования.…”
Section: заключениеunclassified
“…Etnicity-targeted sentiment analysis was considered in (Koltsova et al, 2020). The task was to determine hate-speech by classifying into three classes.…”
Section: Related Workmentioning
confidence: 99%