The aim of this study was to employ an experimental protocol for in vivo evaluation of sols of 5 wt.% poly(ethylene glycol) (PEG) in phosphate-buffered saline as artificial vitreous substitutes. A 20 gauge pars plana vitrectomy and posterior vitreous detachment were performed in the right eye of eight pigmented rabbits. Approximately 1 ml of the viscoelastic PEG sols was then injected into the vitreous space of six eyes. PEG with an average molecular weight of 300,000 and 400,000 g mol−1 was used in two and four eyes, respectively. Two eyes received balanced salt solution and served as controls. Full-field electroretinography was carried out and intra-ocular pressure (IOP, palpation) measured pre- and post-operatively at regular intervals up to 41 days. The rabbits were killed and the eyes examined by retinal photography, gross macroscopic examination and histology. The viscoelastic sols were successfully injected and remained translucent throughout the post-operative period, with some inferior formation of precipitates. None of the eyes displayed IOP elevation post-operatively, but in three of the PEG sol injected eyes transient hypotony was noted. One eye sustained retinal detachment during surgery and another two in the post-operative period. ERG recordings confirmed preservation of retinal function in three out of four eyes injected with 400,000 g mol−1 PEG. Histological examination revealed up-regulation of glial acidic fibrillary protein in Müller cells in PEG sol injected eyes, but normal overall morphology in eyes with attached retinas. The viscosity of the sol was not retained throughout the post-operative period, indicating the demand for polymer cross-linking to increase residence time. The results provide promising preliminary results on the use of PEG hydrogels as a vitreous substitute.