Quantum dots, which are made from semiconductor materials, possess tunable physical dimensions and outstanding optoelectronic characteristics, and they have aroused widespread interest in recent years. In addition to applications in biomolecular analysis, sensors, organic photovoltaic devices, fluorescence, solar cells, photochemical reagents, light-emitting diodes, and catalysis, quantum dots have attracted mounting attention in the field of electrochemical energy storage owing to their size confinement and anisotropic geometry. In this review, a comprehensive summary is given and the research progress of the study of quantum dots for batteries and electrochemical capacitors in recent years, including their synthesis methods, micro/nanostructural features, and electrochemical performance, is appraised.