The electrochemical synthesis of poly (o-aminobenzyl alcohol) (PABA) coatings containing three different amounts of NiZnFe4O4 nanoparticle (NP) with and without 0.25 mM Schiff base (ORG) on stainless steel (SS) was carried out in 0.15 M LiClO4 containing acetonitrile (ACN) solution. The synthesis curves of PABA-NP and PABA-ORG-NP films exhibited the different current and monomer oxidation potential values indicating the presence of NP and ORG compounds. Besides, the addition of ORG to the NP-containing synthesis solution resulted in an increase in the electropolymerization rate of the PABA film compared to the NP-containing medium alone. Indeed, SEM images of PABA-NP and PABA-ORG-NP also showed that their morphological structures were different. As a result of the evaluation of the impedance analysis, it was seen that PABA-NP and PABA-ORG-NP films provided significant physical barrier behavior to the SS electrode, in 3.5% NaCl solution. PABA-NP25 and PABA-ORG-NP25 coatings exhibited more protection behavior against to the move of corrosive substances to SS. The presence of both NP and ORG in the polymer coating further improved the superior protection property of the PABA film, in a longer time.