2001
DOI: 10.1021/bm015559l
|View full text |Cite
|
Sign up to set email alerts
|

Poly(Oxazoline)s with Tapered Minidendritic Side Groups as Models for the Design of Synthetic Macromolecules with Tertiary Structure. A Demonstration of the Limitations of Living Polymerization in the Design of 3-D Structures Based on Single Polymer Chains

Abstract: The synthesis and living cationic ring-opening polymerization of 2-[3,4-bis(n-alkan-1-yloxy)phenyl]-2-oxazolines with alkan being tetradecan and pentadecan, i.e., (3,4)nG1-Oxz with n = 14 and 15, is described. The structural analysis of the resulting polymers with well-defined molecular weights and narrow molecular weight distribution was carried out by a combination of techniques, including differential scanning calorimetry (DSC), thermal optical polarized microscopy (TOPM), and X-ray diffraction (XRD). At lo… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

2
55
1
2

Year Published

2001
2001
2023
2023

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 64 publications
(60 citation statements)
references
References 41 publications
2
55
1
2
Order By: Relevance
“…The cationic ring opening polymerization (CROP) of 2‐oxazolines was first reported in the 1960s5–8 and the living polymerization mechanism was also confirmed by MS 9. Because of the versatility of 2‐oxazoline monomers, the synthesis of a library of well‐defined copolymers with special properties, like self‐organizing features as well as thermoresponsive behavior10–13 is possible, as a consequence, they represent ideal candidates for the concept of functional multicompartment micelles 1, 14–16…”
Section: Introductionmentioning
confidence: 94%
“…The cationic ring opening polymerization (CROP) of 2‐oxazolines was first reported in the 1960s5–8 and the living polymerization mechanism was also confirmed by MS 9. Because of the versatility of 2‐oxazoline monomers, the synthesis of a library of well‐defined copolymers with special properties, like self‐organizing features as well as thermoresponsive behavior10–13 is possible, as a consequence, they represent ideal candidates for the concept of functional multicompartment micelles 1, 14–16…”
Section: Introductionmentioning
confidence: 94%
“…[10b-f, 11a,f] On the other hand, this polymer blending strategy now requires solving the potentially even greater challenge of having to optimize synergistic interactions between multiple polymer components that are each still subject to the whims of synthetic variance in M n and values. [18] Accordingly, we decided to explore the use of a monomolecular weight small molecule as a FK phase diagram modulator that could be reliably sourced in pure form and in commercially scalable volumes as required. Here, the bioactive lipophilic antioxidant 2 (see Figure 1) appeared to be a good choice given the rich scientific literature available regarding its impact on the stability and phase behavior of lipid bilayers and self-assembling amphiphiles, including those developed for drug delivery systems.…”
Section: Angewandte Chemiementioning
confidence: 99%
“…[93,94] Außerdem berichteten Percec et al über systematische Veränderungen der Molekülstruktur von Poly[2-{3,4-bis(n-alkoxy)phenyl}-2-oxazolinen] in Bezug auf den Polymerisationsgrad sowie die Länge der Alkoxyketten. [95,96] Die Polymere mit einer Alkoxykettenlänge von Octan bis Tridecan bildeten kolumnare hexagonale Gitter, deren Abmessungen von der Alkoxykettenlänge wie auch vom Polymerisationsgrad abhängen. [95] Im Unterschied dazu zeigten die Polymere mit Tetradecan-und Pentadecan-Alkoxyketten einen Übergang von einer dreidimensionalen kubischen Phase bei einem niedrigen Polymerisationsgrad zu einer zweidimensionalen hexagonalen kolumnaren Phase bei einem höheren Polymerisationsgrad (Abbildung 6).…”
Section: Selbstorganisation Von Poly(2-oxazolinen)unclassified
“…[95] Im Unterschied dazu zeigten die Polymere mit Tetradecan-und Pentadecan-Alkoxyketten einen Übergang von einer dreidimensionalen kubischen Phase bei einem niedrigen Polymerisationsgrad zu einer zweidimensionalen hexagonalen kolumnaren Phase bei einem höheren Polymerisationsgrad (Abbildung 6). [96] Interessanterweise wurde für Polymere mit mittleren Kettenlän-gen ein thermischer Übergang zwischen den beiden Phasen beobachtet.…”
Section: Selbstorganisation Von Poly(2-oxazolinen)unclassified