A new selective carbon paste electrode (CPE), was applied as an electrochemical sensor for the detection of norepinephrine (NOE). The sensor was modified with 6‐amino‐4‐(3,4‐dihydroxyphenyl)‐3‐methyl‐1,4‐dihydropyrano[2,3‐c],pyrazole‐5‐carbonitrile (ADPC) assisted Fe2O3@CeO2 coreshell nanoparticles (CNs) synthesized by simple method. To identify the redox properties of the modified electrode, and to examine its electrochemical properties, cyclic voltammetry (CV), chronoamperometry and differential pulse voltammetry (DPV) were conducted. Through electrochemical investigations, the coefficient of electron transfer between ADPC and the CNs/CPE (i. e. carbon paste electrode which was modified with CNs), the apparent charge transfer rate constant (ks), and the diffusion coefficient (D) were calculated. The NOE oxidation occurred at the optimum pH of 7.0 and a potential that was about 235 mV less positive than that of the unmodified carbon paste electrode. The interaction between the two metals in the Fe2O3@CeO2 coreshell led to an increase in the surface area and, consequently a sharp increase in the current. The differential pulse voltammogram of NOE showed two linear dynamic ranges an excellent detection limit (3σ) of 40 nM. In addition, NOE, AC and Trp were simultaneously determined at the modified electrode. Finally, NOE was quantitated in a number of real samples.