Five to six percent (by mass) of AKR-2B mouse embryo cell polysomal RNA consists of messenger RNA sequences which may exist in polyadenylated form. In the steady state, however, only 30--40% of these molecules are retained by extensive passage over oligo(dT)-cellulose, the remainder being present in the form of poly(A)-deficient analogues. Within experimental limits, these poly(A)-deficient analogues contain representatives of all poly(A)-containing mRNA sequences in these cells. An analysis of the kinetics of hybridization of cDNA probes enriched for either abundant or rare poly(A)-containing mRNA sequences suggests that the frequency distributions of poly(A)-containing and poly(A)-deficient analogues are dissimilar, and that a relationship exists between the intracellular frequency of a given mRNA sequence and the number of poly(A)-deficient analogues of that sequence. High frequency sequences appear to be enriched in the poly(A)-containing fraction, while low frequency sequences are predominately associated with the poly(A)-deficient fraction, thus, poly(A) may play a role in the regulation of mRNA frequency in the cytoplasm.