Numerous hypotheses have been proposed in order to explain the complexity of autoimmune diseases. These hypotheses provide frameworks towards understanding the relations between triggers, autoantigen development, symptoms, and demographics. However, testing and refining these hypotheses are difficult tasks since autoimmune diseases have a potentially overwhelming number of variables due to the influence on autoimmune diseases from environmental factors, genetics, and epigenetics. Typically, the hypotheses are narrow in scope, for example, explaining the diseases in terms of genetics without defining detailed roles for environmental factors or epigenetics. Here, we present a brief review of the major hypotheses of autoimmune diseases including a new one related to the consequences of abnormal nucleolar interactions with chromatin, the "nucleolus" hypothesis which was originally termed the "inactive X chromosome and nucleolus nexus" hypothesis. Indeed, the dynamic nucleolus can expand as part of a cellular stress response and potentially engulf portions of chromatin, leading to disruption of the chromatin. The inactive X chromosome (a.k.a. the Barr body) is particularly vulnerable due to its close proximity to the nucleolus. In addition, the polyamines, present at high levels in the nucleolus, are also suspected of contributing to the development of autoantigens.