Flexible electronic skins (e-skins) play a very important role in the development of human-machine interaction and wearable devices. To fully mimic the functions of human skin, e-skins should be able to perceive multiple external stimuli (such as temperature, touch, and friction) and be resistant to injury. However, both objectives are highly challenging. The fabrication of multifunctional e-skins is difficult because of the complex lamination scheme and the integration of different sensors. The design of skin-like materials is hindered by the trade-off problem between flexibility, toughness, and selfhealing ability. Herein, flexible sodium methallyl sulfonate functionalized poly(thioctic acid) polymer chains are combined with rigid conductive polyaniline rods through ionic bonds to obtain a solvent-free polymer conductive gel. The conductive gel has a modulus similar to that of skin, and shows good flexibility, puncture-resistance, notch-insensitivity, and fast self-healing ability. Moreover, this conductive gel can convert changes in temperature and strain into electrical signal changes, thus leading to multifunctional sensing performance. Based on these superior properties, a flexible e-skin sensor is prepared, demonstrating its great potential in the wearable field and physiological signal detection.