Purpose The purpose of the study was to determine the levels of polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran (PCDD/F), two types of persistent organic pollutant (POP), in an urban retention reservoir located in an industrial zone within a coal-mining region. It also assesses the potential ecological risk of the PCDDs/Fs present in bottom sediments and the relationship between their content and the fraction of organic matter. Materials and methods The sediment samples were collected from Rybnik Reservoir, located in the centre of the Rybnik Coal Region, Silesia, one of Poland's major industrial centres. Seventeen PCDD/F congeners in the surface of the sediments were analysed using high-resolution gas chromatography and high-resolution mass spectrometry (HRGC/HRMS). Results and discussion The toxic equivalency (TEQ) of the PCDDs/Fs in the sediments ranged from 1.65 to 32.68 pg TEQ g −1. PCDDs constituted 59-78% of the total PCDDs/Fs, while the PCDFs accounted for 22-41%. The pattern of PCDD/F congeners in the sediments was dominated by OCDD. However, the second-most prevalent constituents were OCDF and ∑HpCDFs in the low TOC sediment (< 10 g TOC kg −1), but HpCDD in the rich TOC samples (> 10 g TOC kg −1). PCDD/F concentrations in the sediment samples were 2-to 38-fold higher than the sediment quality guidelines limit, indicating high ecological risk potential. Although a considerable proportion of PCDDs/Fs in the bottom sediments from the Rybnik Reservoir were derived from combustion processes, they were also obtained via transport, wastewater discharge, high-temperature processes and thermal electricity generation. The PCDD/F concentrations were significantly correlated with all fractions of organic matter; however, the strongest correlation coefficients were found between PCDDs/Fs and humic substances. Besides organic matter, the proportions of silt/clay fractions within sediments played an important role in the transport of PCDDs/Fs in bottom sediments. Conclusions The silt/clay fraction of the bottom sediments plays a dominant role in the movement of PCDDs/Fs, while the organic matter fraction affects their sorption. The results indicate that the environmental behaviour of PCDDs/Fs is affected by the quantity and quality of organic matter and the texture of sediments.