Background
The genetic basis of type 2 diabetes (T2D) is under-investigated in the Middle East, despite the rapidly growing disease prevalence. We aimed to define the genetic determinants of T2D in Qatar.
Methods
Using whole genome sequencing of 11,436 participants (2765 T2D cases and 8671 controls) from the population-based Qatar Biobank (QBB), we conducted a genome-wide association study (GWAS) of T2D with and without body mass index (BMI) adjustment.
Results
We replicated 93 known T2D-associated loci in a BMI-unadjusted model, while 96 known loci were replicated in a BMI-adjusted model. The effect sizes and allele frequencies of replicated SNPs in the Qatari population generally concurred with those from European populations. We identified a locus specific to our cohort located between the APOBEC3H and CBX7 genes in the BMI-unadjusted model. Also, we performed a transethnic meta-analysis of our cohort with a previous GWAS on T2D in multi-ancestry individuals (180,834 T2D cases and 1,159,055 controls). One locus in DYNC2H1 gene reached genome-wide significance in the meta-analysis. Assessing polygenic risk scores derived from European- and multi-ancestries in the Qatari population showed higher predictive performance of the multi-ancestry panel compared to the European panel.
Conclusion
Our study provides new insights into the genetic architecture of T2D in a Middle Eastern population and identifies genes that may be explored further for their involvement in T2D pathogenesis.